Search results for "Lignocellulosic bioma"
showing 10 items of 29 documents
Imidazolium Based Ionic Liquids: A Promising Green Solvent for Water Hyacinth Biomass Deconstruction.
2018
Water hyacinth (WH) is a troublesome aquatic weed of natural and artificial water bodies of India and other tropical countries and causing severe ecological problems. The WH biomass is low in lignin content and contains high amount of cellulose and hemicellulose, making it suitable material for conversion into liquid fuels for energy production. This study highlighted that, how different imidazolium based ionic liquids (ILs) [1-alkyl-3-methylimidazolium bromide, [Cnmim]Br (n = 2, 4, 6, 8, and 10)] with tunable properties can be employed for the degradation of WH biomass. Different characterizations techniques, such as XRD, FT-IR, SEM, and DSC are used to unravel the interplay between ILs an…
The combined effect on initial glucose concentration and pH control strategies for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobut…
2021
Abstract The use and depletion of fossil fuels raised the interest in biofuels like biobutanol. Clostridium acetobutylicum DSM 792 is capable of producing biobutanol through ABE fermentation. Butanol production can be influenced by low sugar concentrations, like those obtained after hydrolysis of pre-treated lignocellulosic biomass. This study aimed to evaluate the influence of the initial glucose concentrations (33, 66 and 100 g L−1) and pH control strategies on biobutanol production and glucose consumption. Uncontrolled pH fermentation exhibited low butanol production due to either glucose exhaustion (33 g L−1) or the phenomenon of acid crash (66 and 100 g L−1), which was alleviated by th…
Potential of an exploitation of acid-tolerant antimicrobial microorganisms evolving enzyme systems for the utilization of dairy by-products and ligno…
2016
Introduction Bioproduction of optically pure lactic acid (LA) has roused interest in the recent years due to its potential application in a wide range of fields, and there is a significant interest to further development of sustainable and cost-effective process. However, the efficient utilization of agro-industrial wastes for LA production still causes considerable challenges. The biotechnological LA production within the targeted cost still required the development of high-performance LA-producing microorganisms and the lowering of the costs of raw materials and fermentation process. Cheap biomass, such as starchy and cellulosic agricultural residues or by-products from the food industry,…
Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Ca…
2018
Abstract Background Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methane production from steam-exploded birch in an anaerobic digestion (AD) process under thermophilic conditions (62 °C). Results Overall, the combined SE and bioaugmentation enhanced the methane yield up to 140% compared to untreated birch, while SE alone contributed to the major share of methane…
Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review
2020
Abstract Currently major part of the world’s energy requirements is fulfilled by fossil resources. Severe economic and environmental problems along with their limited resources are still a major issue. Long-term environmental and commercial concern has focussed into huge research in the past decades to replace fossil fuels with renewable sources of energy. The main focus of energy research is lignocellulosic substrates, which seems to be the best for energy application due to easily availability, cost-effective and environment favourable production process. Therefore, lignocellulosic materials provide economical, environmental and energetic benefits with an alternative to traditional or hig…
Promoting Deoxygenation of Bio-Oil by Metal-Loaded Hierarchical ZSM-5 Zeolites
2016
3 Figuras.- 5 tablas.-1 Esquema.- This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Sustainable Chemistry & Engineering, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acssuschemeng.5b01606 ”
Obtaining lignocellulosic biomass-based catalysts and their catalytic activity in cellobiose hydrolysis and acetic acid esterification reactions
2021
Global challenges prompt the world to modify its strategies and shift from a fossil-fuel-based economy to a bio-resource-based one with the production of renewable biomass chemicals. Different processes exist that allow the transformation of raw biomass into desirable bio-based products and/or energy. In this work different biochars that were obtained as a by-product from birch chip fast pyrolysis and carbonization were used as is or chemically/physically treated. These sulfonated carbon catalysts were compared to a commercially available sulfonated styrene-divinylbenzene macroreticular resin (Dowex 50W X8). Characterisation (water content and pH value, FTIR, base titration, element analysi…
Effective saccharification of lignocellulosic barley straw by mechanocatalytical pretreatment using potassium pyrosulfate as a catalyst
2017
The catalytic conversion of lignocellulosic biomass is attractive due to the feasible generation of valuable products such as reducing sugars which constitute the basic substrates for chemical and transportation fuel production, as well as the production of renewable hydrogen. This study shows the efficient conversion of lignocellulose, especially hemicellulose, into reducing sugars such as xylose and galactose, by mechanocatalysis using potassium pyrosulfate, K2S2O7, as an effective salt catalyst. Ball milling was performed, introducing a mechanical force which, combined with chemical pretreatment, leads to reducing sugar yields (40%) almost as high as when commonly used sulfuric acid was …
Biogas production and saccharification of Salix pretreated at different steam explosion conditions.
2011
Abstract Different steam explosion conditions were applied to Salix chips and the effect of this pretreatment was evaluated by running both enzymatic hydrolysis and biogas tests. Total enzymatic release of glucose and xylose increased with pretreatment harshness, with maximum values being obtained after pretreatment for 10 min at 210 °C. Harsher pretreatment conditions did not increase glucose release, led to degradation of xylose and to formation of furfurals. Samples pretreated at 220 and 230 °C initially showed low production of biogas, probably because of inhibitors produced during the pretreatment, but the microbial community was able to adapt and showed high final biogas production. I…
Semi-Continuous Lab-scale Plant for Hydrothermal or Organosolv Treatment of Lignocellulosic Biomass
2013
Lignocellulosic biomass is increasingly being considered as a potential alternative source for both fuels and goods production. In order to better address the starting material to higher conversion and selectivity in the desired products, the possibility to selectively control the dissolution of the three main constituents of the matrix (hemicellulose, cellulose and lignin) should be pursued. As the three biopolymers are intimately connected one another, a suitable pretreatment step could help the effectiveness of the whole process, by producing cleavage of the biomacromolecules interconnecting bonds and by starting their depolymerization . In this frame, we developed a semi-continuous lab-…